
homecloud: a cloud at home with
Kubernetes and Syncthing

Table of Contents
Introduction. 2

Vision. 2

Business scenarios . 3

Drivers . 9

Constraints. 10

Principles . 10

Requirements . 11

Work Packages . 13

The Platform . 14

The hosting strategies . 14

The container engine and orchestrator . 15

The cluster availability . 15

The distributed block storage . 16

The reverse proxy . 16

Monitoring and alerting . 16

Orchestrator management . 16

Backup and restore . 17

Security hardening . 17

Infrastructure as code. 17

Characteristics . 18

Decentralized NAS . 18

Characteristics . 19

Software Architecture. 20

Deployment . 21

Example . 22

Services . 23

Characteristics . 24

Software Architecture. 25

Deployment . 26

Example . 27

Deliverables . 28

Glossary . 29

References . 30

1

Abstract

Provide resources to bootstrap and manage:

1. an private cloud

2. and self-hosted services

The main artifact is an Ansible collection.

Introduction
The genesis of this initiative comes from two Framasoft momentum: De-google-ify Internet [dgo];
and its following one: Contributopia [cpa]. The main concern is digital independence. It’s about
surveillance and privacy of what we are, but also centralization of actors and usages.

According to this context, the initiative provides a way to self-host services which deal with private
data. It mainly leverages on n private cloud to support its realization. That means to run a cloud at
home, so the name homecloud.

A cloud is a network of hardware and software elements which provides dynamically and
efficiently common resources (e.g. servers, storage …) [dcc] . Obviously, the purpose is not to re-do
the infrastructure of big actors in the living room.

However, a cluster of affordable development boards (like Raspberry PI) associated to open source
technologies (like Kubernetes) can be enough to get a working tiny private cloud … in the living
room.

Vision
The primary goal of homecloud is to provide the main services which manage private data (files
sharing, contacts and calendars) storing it locally.

The secondary goal of homecloud is to provide services embracing both organizational structures:
centralized and decentralized.

homecloud is used by three kind of persons. Those which take care of their private data. Those which
are skilled enough to administrate the system. And finally those which have been temporally
allowed to interact with some services provided by the system. Additionally, homecloud can also be
used by external systems like agents installed on smartphones, laptops, etc.

2

Figure 1. Vision: Context Diagram of homecloud

Business scenarios

Photos Synchronization

Problem

Photos took on mobile phones are usually, by convenience, synchronized
in a third party cloud. Therefore, the photos binaries are stored
somewhere in the world, escaping their owner’s control. Once
synchronized, the mobile phone’s owner can browse and manage them
according to the vendor’s user interfaces.

Environment
The synchronization process can be centralized or decentralized but also
unidirectional or bidirectional.

Outcomes

With homecloud, the photos can also be synchronized but still remain
private because they are stored locally, under the control of the mobile
phone’s owner. Moreover, they can also be managed using friendly user
interfaces.

Human Actors • the owner of the photos

3

System Actors

• a centralized system with authorized agents on the mobile phone(s)

• and/or a decentralized system leveraging on a network of peer-to-
peer agents distributed on nodes (servers, computers, mobile phones
…)

Figure 2. Business Scenario: Usecase Diagram of Photos Synchronization

Value Stream

Name Handle Photos Changes

Description
The activities involved in keeping photos private from the device to
homecloud.

Stakeholder The owner of the photos.

Value
The photos are synchronized and can be managed with interfaces
provided by homeloud.

Figure 3. Business Scenario: Value Stream of Handle Photos Changes

Table 1. Business Scenario: Value Stream Stages of Handle Photos Changes

Value Stream
Stage

Description Participating
Stakeholders

Entrance
Criteria

Exit Criteria Value Items

Change Photos
on Device

The act of
taking or
deleting photos
on a device like
a smartphone.

Owner of the
photos

Owner using
its device

Photos taken or
deleted

Photos
managed by
the user it-self

4

Value Stream
Stage

Description Participating
Stakeholders

Entrance
Criteria

Exit Criteria Value Items

Synchronize
Photos

The act of
replicating
changes across
systems.

Owner of the
photos

Photos taken or
deleted

Photos
synchronized

Changes
applied
everywhere

Manage Photos
on homecloud

The act of
copying,
moving or
deleting
photos.

Owner of the
photos

Photos
synchronized

Changes to
synchronize

Photos
managed
according to
owner wishes

Files Synchronization

Problem

For convenience or backup purpose, it is common to synchronized files
among devices or with centralized systems. For instance, to back up
personal documents in case of disasters (e.g. hard disk crash) or to
transfer user files from an old computer to a new one. Most of the built-in
(and also convenient) solutions of famous operating systems like
Windows or Android are mainly cloud based. Therefore, for a while, or
permanently, the files are stored in a third party cloud, escaping the
owner’s control.

Environment
The synchronization process can be centralized or decentralized but also
unidirectional or bidirectional.

Outcomes
With homecloud, the files can also be synchronized but still remain private
because they are stored locally, under the control of the mobile phone’s
owner.

Human Actors • the owner of the files

System Actors

• a centralized system with authorized agents on edge nodes
(computer, mobile phones …)

• and/or a decentralized system leveraging on a network of peer-to-
peer agents distributed on nodes (servers, computers, mobile phones
…)

5

Figure 4. Business Scenario: Usecase Diagram of Files Synchronization

Value Stream

Name Handle Files Changes

Description
The activities involved in keeping files private from the device to
homecloud.

Stakeholder The owner of the files.

Value
The files are synchronized and can be managed with interfaces provided
by homeloud.

Figure 5. Business Scenario: Value Stream of Handle Files Changes

Table 2. Business Scenario: Value Stream Stages of Handle Files Changes

Value Stream
Stage

Description Participating
Stakeholders

Entrance
Criteria

Exit Criteria Value Items

Change Files
on Device

The act of
creating,
updating or
deleting files
on a device like
a laptop.

Owner of the
files

Owner using
its device

Files mutated Files managed
by the user it-
self

Synchronize
Files

The act of
replicating
changes across
systems.

Owner of the
files

Files mutated Files
synchronized

Changes
applied
everywhere

6

Value Stream
Stage

Description Participating
Stakeholders

Entrance
Criteria

Exit Criteria Value Items

Manage Files
on homecloud

The act of
copying,
moving or
deleting files.

Owner of the
files

Files
synchronized

Changes to
synchronize

Files managed
according to
owner wishes

Files Sharing

Problem

The synchronization of photos or files leads to a dynamic replication of
data. However, for some cases the replication is overkill. For instance, to
share a file over Internet to a well-known contact. But also, to stream on
the TV a content available in the local network. In those cases, it is just
enough share the content, because only the consumer knows if the
content has to be stored permanently or not once received.

Environment
The share can be done within a local network, for instance using file
systems like CIFS or over the web, for instance using a regular HTTP
endpoint.

Outcomes
With homecloud, the content synchronized are also available for sharing,
under the control of their owners, within the local network or over
Internet.

Human Actors
• the owner of the shared content

• the recipients of the shared content

System Actors • a centralized system hosting and controlling the accesses

Figure 6. Business Scenario: Usecase Diagram of Files Sharing

Value Stream

Name Share Files

Description
The activities involved in selecting and providing shared files hosted on
homecloud.

7

Stakeholder The owner of the files.

Value The files are shared abroad the homecloud boundaries.

Figure 7. Business Scenario: Value Stream of Share Files

Table 3. Business Scenario: Value Stream Stages of Share Files

Value Stream
Stage

Description Participating
Stakeholders

Entrance
Criteria

Exit Criteria Value Items

Select Shared
Files

The act of
define which
files have to be
shared.

Owner of the
files

Files to share Files selected Files selected
by the user it-
self

Provide Shared
Files

The act of
providing the
shared files to
the targets.

Owner of the
files

Files selected Files shared Files ready to
be consumed

Consume
Shared Files

The act of
interacting
(fetching,
streaming, …)
with the
shared files.

• A Guest

• Owner of
the files

• A homecloud
service

• An
External
System

Files shared Files consumed Files handled
by the targets

Contacts and Calendars Management

Problem

With smartphones, it became common to have virtual address books.
Because of convenient, the address books are usually synchronized with
a third party solution which, most of the time, is managed by the
operating system’s owner. Therefore, a piece of who we are (i.e. who
knows who) are stored in the cloud, somewhere in the world, escaping
the control of the address book owner.

Environment The synchronization within the local network but also over the Internet.

Outcomes
With homecloud, address books and other personal calendars are also
synchronized but, they are stored locally, under the control of their
owners.

Human Actors • the owner of the personal data

8

System Actors

• a centralized system hosting and controlling the accesses

• and/or a decentralized system leveraging on a network of peer-to-
peer agents distributed on nodes (servers, computers, mobile phones
…)

Figure 8. Business Scenario: Usecase Diagram of Contacts & Calendars Management

Drivers

Privacy
homecloud emerged because of private data concern. De facto private date
are located within the homecloud boundaries.

Flexibility
A homecloud cluster is tailored by the user: the topology of the nodes, their
operating systems, the available services, the domain names, passwords
…

Extensibility
The platform which supports the out-of-the-box homecloud services can
also be used for other concerns.

Elasticity homecloud resources can be added or removed manually or dynamically.

Performance

homecloud is not designed for high performances, intensive scaling and so
on. Its main purpose is a cloud at home able to run on a cheap
infrastructure. In deed, the performances are in fact highly related to
hardware concerns and so the user decisions.

9

Security

Despite delivered artifacts won’t cover all security concerns, configured
resources for the platform and services will fulfill the minimum secure
practices. Nevertheless, the flexibility and extensibility of homecloud
provides to the user ways to define its own level of security.

Disaster Recovery
homecloud provides services to prevent data loss with backup processes
and data replication.

Observability Resources of a homecloud cluster can be monitored and observed.

Constraints

Target deployment
platform

• The system must run on development boards at least for production
purpose.

• The system must run in virtual environments at least for
development and testing purposes.

Open source
The system must rely exclusively on open source technologies.
Dispensation can be done when open source alternatives are not
available.

Technology Maturity
Due to the nature of the initiative, homecloud may rely on adventurous
solutions. Nevertheless, when available, matured technologies are
emphasis.

Expected
Technologies

homecloud relies on container orchestration to provide some cloud
computing architectural artifacts. The most complete implementation
embracing container orchestration is kubernetes. Therefore, the main
technology involves in homecloud must be kubernetes.

Maintenance
A homecloud cluster must rely on approaches like automation and self-
healing to decrease the maintenance activities. Moreover, a homecloud
should be easily administrate by a single person.

Skills
A homecloud cluster cannot be managed by anyone, some skills related to
system administration, container orchestration … are expected.

Principles

Name Separation of Services and Platform

Statement The services should not be tightly coupled to the homecloud platform.

Rationale
With a loose coupling approach between the platform and the services,
each side can have its own lifecycle. Moreover, services provided by
external sources can also be easily integrated.

10

Implications

homecloud provides must provide two main deliverables:

• resources to bootstrap and maintain the platform

• resources to install and maintain the built-in services

Moreover, each deliverable can be implemented separately with
different paces of development or technologies.

Name Convergence of Centralization and Decentralization

Statement
Services provided by `homecloud ` should embrace both organizational
structures centralized and decentralized.

Rationale

Some services, especially those leveraging on files, can be handled from a
centralized (e.g. a client/server relationship) or decentralized (e.g. a peer
to peer network) approach. The best approach depends on the context of
the usage. That why, as long as it is possible, the built-in services of
homecloud should embrace both organizational structures.

Implications
The solutions which embrace both organizational structures, especially
those working on files, have to be carefully implemented to avoid conflict
and data loss.

Requirements

Centralized Synchronization

Statement
The system must provide a service to synchronize files between a client
and a server.

Rational The requirement is expected by use cases.

Use Cases
• Synchronize Photos

• Synchronize Files

Principles • Centralized approach

Specification

• The synchronization should leverage on the WebDav protocol.

• The synchronization can be handled by a non-standard solution.

• The synchronized content must be readable and mutable by a
decentralized solution.

Statement
The system must provide a service to synchronize contacts between a
client and a server.

Rational The requirement is expected by use cases.

Use Cases • Synchronize Contacts

Principles • Centralized approach

11

Specification
• The synchronization should leverage on the CardDav protocol.

• The synchronization can be handled by a non-standard solution.

Statement
The system must provide a service to synchronize calendars between a
client and a server.

Rational The requirement is expected by use cases.

Use Cases • Synchronize Calendars

Principles • Centralized approach

Specification
• The synchronization should leverage on the CalDav protocol.

• The synchronization can be handled by a non-standard solution.

Decentralized Synchronization

Statement The system must provide a service to synchronize files between peers.

Rational The requirement is expected by use cases.

Use Cases
• Synchronize Photos

• Synchronize Files

Principles • Decentralized approach

Specification • The synchronization can be handled by a non-standard solution.

Statement
The system must provide a service to synchronize contacts between
peers.

Rational The requirement is expected by use cases.

Use Cases • Synchronize Contacts

Principles • Decentralized approach

Specification
• The synchronization should leverage on the vCard format.

• The synchronization can be handled by a non-standard solution.

Statement
The system must provide a service to synchronize calendars between
peers.

Rational The requirement is expected by use cases.

Use Cases • Synchronize Calendars

Principles • Decentralized approach

Specification
• The synchronization should leverage on the iCalendar format.

• The synchronization can be handled by a non-standard solution.

12

Sharing

Statement The system must provide a service to share files to external systems.

Rational The requirement is expected by use cases.

Use Cases
• Share Photos

• Share Files

Principles • Centralized approach

Specification • The following protocols must be supported: CIFS, NFS and WebDav.

Statement The system must provide a service to share files to guest.

Rational The requirement is expected by use cases.

Use Cases
• Share Photos

• Share Files

Principles • Centralized approach

Specification

• A User Interface must be available to create the share.

• A User Interface must be available to provide the shared content to
the guest.

Non-Functional

Statement
The system must provide a service to back up and restore data managed
by other homecloud services.

Rational The requirement is expected to meet drivers.

Drivers • Disaster Recovery

Specification
• The solution should be a "native" feature of the main platform

technology.

Statement The system must provide a service to observe the homecloud resources.

Rational The requirement is expected to meet drivers.

Drivers • Observability

Specification
• The solution may store data.

• The solution must provide a user interface.

Work Packages
homecloud leverages on three main work packages. The first one, the Platform, provides support for
the two other ones. The second one, the Decentralized NAS, is a regular centralized NAS dedicated to
store the private photos and files. However, a peer-to-peer system is plugged to it, so that
replication can also be handled with a decentralized approach. Finally, the Services, relies on the
Decentralized NAS to manage its content and to provide the remaining services: contacts

13

management, files sharing …

Figure 9. Vision: Component Diagram of the Work Packages

The Platform

The hosting strategies
To properly operate services, homecloud leverages on two hosting strategies: containerized
workloads and container orchestration.

The first strategy, the containerized workload (i.e. the containerization), provides many benefits
about the packaging, distribution and usage of the services them-self [rhc].

The key characteristics are:

• Portability: a container can be easily deployed in a container environment whatever the host’s
operating system within the respect of the container’s and host’s architecture.

• Configurability: a container can be easily configured about its infrastructure (cpu, memory …)
but also about the underlying workload (overriding containerized file or environment
variables).

14

• Isolation: a container cannot exceed its infrastructure limit and so cannot impact sibling
running containers.

• Efficient disk usage: a containerized workload needs less disk usage than virtualized one.

The second one, the container orchestration, provides also many benefits about the overall
handling of containerized workloads [rhco].

The key characteristics are:

• Automatic deployments: a container orchestrator manages it-self the deployment process of
containerized workloads across the nodes.

• Container management: a container orchestrator provides services to monitor and interact with
containerized workloads deployed among the cluster nodes.

• Resource allocation: a container orchestrator monitors and manages the resources to satisfy the
requirements of the deployed containerized workloads.

• Networking configuration: a container orchestrator manages it-self the networking
configuration to provide isolation and/or inter-connection between containerized workloads
according to their needs.

However, a couple of hosting strategies are not enough to provide an efficient platform. Some
pieces are still missing: a set of building blocks able to support the services embracing the hosting
strategies.

The container engine and orchestrator
The containerization of workloads as well as their management are handled by many technologies.
Nevertheless, an effort of standardization emerged from the industry which led to the creation of
the Cloud Native Computing Foundation (CNCF) [cncf]. The CNCF hosts many components, some of
them are the first building blocks of the homecloud stack.

The first one is containerd [cntd]. It’s the container engine which handles the containerization of
workloads. The second one is kubernetes [k8s]. It’s the container orchestrator managing the cluster
of containerd instances. Finally, the last one is k3s [k3s]. It’s a distribution of kubernetes dedicated of
IoT or other cloudless native environments … like homecloud.

The orchestration of containerized workloads is a good starting point. However, many other
concerns have to be tackled, the next one is about availability.

The cluster availability
Basically when a request comes from Internet, the router has to redirect it to the cluster using the
port forwarding technique. Therefore, the router must be configured with an IP able to handle the
forwarded requests.

In the homecloud context, the configured IP is one of anyone of the cluster nodes, because
Kubernetes is internally able to forward requests to the right node whatever the entry point.

15

However, IP addresses can be dynamics and moreover the node availability cannot be guarantied.
It means the configured IP could become unallocated in the future in case of dynamic IP, or
pointing to a node which stops to work properly. Therefore, the cluster is not reliable because the
cluster is not highly available [doha].

One of the simplest solutions to prevent unavailability of the cluster is to use the virtual server
technique [vswt]. That means, from the router point of view, the cluster is in fact just a unique
server which can be reached with a unique IP address which will never ever change.

Now the cluster is highly available, the next topic is to be sure the containerized workloads are
fully highly available too.

The distributed block storage
Deploying a container and providing its high availabilities on a cluster is easy with Kubernetes.
However, it doesn’t manage the availability of the container’s data among the nodes.

For instance, if a container hosting a database is destroyed and then re-created on a new node by
the orchestrator, by default, the new container won’t start with the data related to the destroyed
one.

In order to get the availability of the data among the nodes of the cluster, a distributed storage
system has to be configured.

Now containers are able to recover their data over their lifecycles, there is another topic to deal
with: how final services will be found and reached from Internet?

The reverse proxy
A reverse proxy handles the requests coming from the external world and then dispatch them to
the internal one. In the homecloud context, the reverse proxy handles the requests coming from
Internet and then dispatch them to the containerized workloads. The handling of incoming
requests can be straight forward or much complex: enhancement of requests, security, load
balancing …

Presently, the cluster is able to properly serves services within usual circumstances. Nevertheless,
unexpected events can occur and lead to unavailability of the cluster. Unavailability is not welcome
and another building block should prevent it: the monitoring of the cluster’s status and the alerts
broadcasting.

Monitoring and alerting

 TODO Introduce observability

Orchestrator management
The management of a Kubernetes cluster can be done using the command line interface provided

16

by kubectl. However, its usage requires access to the terminals of cluster nodes locally or remotely.
Another way is to use a web-app which will be able to directly deals with the Kubernetes API. So
that, the management activities can be done without direct access to the cluster nodes.

The management of the Kubernetes resources cannot resolve all maintenance cases. The Murphy’s
law is too strong, too true. Anything that can go wrong will go wrong, and it could be disaster.
Therefore, another building block has to be defined: the backup and restore.

Backup and restore
In the homecloud context, the term disaster means: data stored in Ceph have been lost. For instance,
the Nextcloud database cannot be used any more because of data corruption which cannot be
resolved by the MariaDB engine it-self. Therefore, homecloud must provide a way to recover the
disaster. The most affordable way to recover data is to regularly backup them and storing them in
another system.

At this point, all main building blocks have been introduced. Nevertheless, side concerns have to be
yet tackled.

Security hardening
A private cloud, 1) hosted on low cost ARM boards, 2) available from a domestic Internet access
and, 3) managed with non-professional manners could be a target for external threats. Therefore,
in the homecloud context, the best way is, by default, to harder every thing.

However, the goals of the security hardening subject are wides and sometime not easily reachable.
Could it be possible to easily harden a container image which is built by another entity? Or to easily
harden application configuration without knowing the application it-self? Is it realistic to adapt the
physical installation of a rent house because of security hardening principles?

The present paper doesn’t cover the security hardening of the homecloud external world: the router,
the ethernet/wireless networks, the electromagnetic fields … [hwn]. It focuses only on the virtual
world, i.e. from the operating systems to the applications providing the services.

Resources exist to deal with the security hardening subject in the scope of a cluster of servers. One
of the most popular projects is the DevSec Project [dsp].

Infrastructure as code
A homecloud cluster can be fully installed manually node by node, task by task, package by package,
etc. However, this approach, even if highly instructive, is time-consuming and error-prone. In the IT
industry there is more efficient way to manage infrastructure stuff: the infrastructure as code
[rhic].

It relies on a declarative model stored in a revision control system (e.g. GIT). The model is then used
to drive tools which automate the IT tasks. So that, processes become a development artifact.
Therefore, to source code of the artifacts can be developed and tested iteratively in virtual
environments, especially in a continuous integration context.

17

Characteristics

Decentralized NAS

ServicesPractices
In

fr
as

tr
uc

tu
re

 A
s

C
od

e

S
ec

ur
ity

 H
ar

de
ni

ng

Platform

Container Orchestration
[Kubernetes & k3s]

Reverse Proxy
[Traefik]

High Availability
[Keepalived]

Distributed Storage
[Longhorn]

Backup And Restore
[Longhorn, Duplicity]

Cluster Management
[Portainer, Kubernetes Dashboard]

Observability
[Prometheus & Grafana]

Figure 10. The Platform: The Characteristics Stack

Table 4. The Platform: The Characteristics Matrix

Characteristic MoSCoW
value

Solutions

Container Orchestration Must Have • Kubernetes [k8s] distributed by k3s [k3s]

Reverse Proxy Must Have • Traefik [tra]

Infrastructure as code Must Have • Ansible [ans]

• Kustomize [ktz]

• Helm [hlm]

High Availability Should Have • Keepalived [kad]

Distributed Storage Should Have • Longhorn [lhn]

Backup and Restore Should Have • Longhorn [lhn]

• duplicity [dup]

Security Hardening Could Have • devsec.hardening [acsh]

Cluster Management Could Have • Kubernetes Dashboard [kdb]

• Portainer [por]

Observability Could Have • Prometheus [pmt] & Grafana [grf]

Decentralized NAS
The purpose of a Decentralized NAS (also named dnas) is to expose private files over the local
network like a usual NAS but also from Internet. Moreover, changes are handled by centralized
protocols (e.g. CIFS, NFS) and also decentralized ones (e.g. p2p).

18

Figure 11. Decentralized NAS: Context Diagram of Decentralized NAS

Characteristics

19

Services

Platform

Practices

In
fr

as
tr

uc
tu

re
 A

s
C

od
e

S
ec

ur
ity

 H
ar

de
ni

ng

Decentralized NAS

External Storage
[USD Drive, SD-Card, ...]

Share over CIFS
[Samba]

Share over NFS
[NFS Server]

Replication over P2P
[Syncthing]

Figure 12. Decentralized NAS: The Characteristics Stack

Table 5. Decentralized NAS: The Characteristics Matrix

Characteristic MoSCoW
value

Solutions

Synchronization over P2P Must Have Syncthing [syt]

Share over CIFS Must Have Samba [smb]

Share over NFS Must Have NFS Server [nfs]

External Storage Must Have USB Drive, SD-Card, etc.

Software Architecture
The solution leverages on three main runtimes:

• a NFS server to serve files over the NFS protocol

• a Samba server to serve files over the CIFS protocol

• a Syncthing instance to handle files replication over a P2P network

All runtimes rely on the same source of truth: a location in the file-system. The location can be
related to a mount of an external block storage, e.g. USB Drive, SD-Card.

20

Figure 13. Decentralized NAS: Container Diagram of Decentralized NAS

Deployment
Syncthing is managed as a regular service of the operating system. That means, the process has
direct accesses to the host resources, especially the network stack. The CIFS server and Samba are
deployed in Kubernetes within the same pod. Because the three services rely on the same location
in the host filesystem, they have to run on the same homecloud node, i.e. the same board.

Many instances of Decentralized NAS can co-exist within the same homecloud cluster. In that case,
Syncthing is used to synchronized data between them.

21

Homecloud Node
[board]

Kubernetes Node
[kubernetes]

Kubernetes Cluster

dnas
[pod]

Samba
[container]

data
[volume]

NFS Server
[container]

syncthing
[OS service]

dnas data
[location in fs]

Homecloud Node x
[board]

Kubernetes Node x
[kubernetes]

dnas
[pod]

Samba
[container]

data
[volume]

NFS Server
[container]

syncthing
[OS service]

dnas data
[location in fs]

files synchronization

Figure 14. Decentralized NAS: Layout of a dnas node

Example
In the following example, Decentralized NAS is deployed on two nodes, i.e. two different boards.

User Phone pushes photos to Node #2 with its Syncthing application. The photos are then stored in
the Node #2 file system and also synchronized with Node #1 because of the Syncthing peering.

On User Laptop, private documents (spreadsheets, pictures, etc.) are synchronized with Node #1
using Syncthing. Because of the Syncthing peering with Node #2, the documents are also replicated
there. Additionally, a File Navigator is connected to the Samba server on Node #1, so that photos
pushed by User Phone can be locally browsed. Moreover, downloaded ROMS are pushed to the
Decentralized NAS with the same CIFS channel.

Finally, on Console, the gaming platform can fetch the ROMs (pushed by User Laptop) on the NFS
Server of Node #2.

22

Figure 15. Decentralized NAS: An example of Decentralized NAS usage

Services
The purpose of Services is to expose services over the web via front-ends for end users as well as
web-services for external systems.

23

Figure 16. Services: Context Diagram of Decentralized NAS

Characteristics
Because of its cloud nature, homecloud can support many services. Nevertheless, only those
identified within the vision description (c.f. Vision) will be detailed.

24

Decentralized NAS

Platform

Practices

In
fr

as
tr

uc
tu

re
 A

s
C

od
e

S
ec

ur
ity

 H
ar

de
ni

ng

Services

Contacts Management
[Nextcloud]

Calendars Management
[Nextcloud]

Files Synchronization
[Nextcloud]

Files Sharing
[Nextcloud]

Online Library
[Calibreweb]

Contacts Management
[Calibreweb]

Online Galery
[Piwigo]

Streaming Platform
[PeerTube]

To-do Management
[Wekan]

Git Repository
[Gitea]

Image sharging
[Pixelfed]

...

Figure 17. Services: The Characteristics Stack

Table 6. Services: The Characteristics Matrix

Characteristic MoSCoW
value

Solutions

Contacts Management Must Have Nextcloud [ncd]

Calendars Management Must Have Nextcloud [ncd]

Files (Photos)
Synchronization

Must Have Nextcloud [ncd]

Files Sharing Must Have Nextcloud [ncd]

Software Architecture
The solution leverages on only one system, Nextcloud, which is composed of three main runtimes:

• the monolith which handles the requests

• the database which contains the data like users, contacts, …

• the cache which contains transient data for improvement

Moreover, the solution relies on the Decentralized NAS to have access to private files. So that,
private files can be fetched and mutated from both approaches centralized and decentralized.

25

Figure 18. Services: Container Diagram of Services

Deployment
The Nextcloud system is fully managed by Kubernetes.

26

Figure 19. Services: Nextcloud and Kubernetes integration

Example
The following example shows photos took on User Phone are synchronized User Phone

In the following example, the Services is deployed on two nodes, i.e. two different boards.

User Phone pushes photos to Nextcloud Monolith with the local mobile Nexcloud application. On
Nextcloud Monolith, the photos are directly written in a CIFS share provided by Decentralized NAS.
So that, the photos are stored in the local dnas data drive and then replicated on Node #2 over
Syncthing.

On User Laptop, downloaded ROMS are synchronized with Node #1 using the local desktop
Nexcloud application. Like for the photos, the ROMS are store in the local dnas data drive and then
replicated on Node #2. The same photos can also be browsed using the front-end of Nextcloud
Monolith with an Internet Navigator.

Finally, on Console, the gaming platform can fetch the ROMs (pushed by User Laptop) on the NFS
Server of Node #2.

27

Figure 20. Services: An example of Services usage

Deliverables
The homecloud work packages are bundled in two main deliverables:

1. an Ansible Collection [ans] which implements both work packages the Platform and
Decentralized NAS

2. Kustomize Modules [ktz] which implements the work package Services

Table 7. Deliverables: The Platform Matrix

Solution Characteristics Deliverable Runtime

devsec.hardening • Security Hardening Ansible Collection Operating System

Keepalived • High Availability Ansible Collection Operating System

k3s • Container
Orchestration

Ansible Collection Operating System

Traefik • Reverse Proxy Ansible Collection Kubernetes

Longhorn • Distributed Storage

• Backup and Restore

Ansible Collection Kubernetes

Kubernetes
Dashboard

• Cluster
Management

Ansible Collection Kubernetes

Portainer • Cluster
Management

Ansible Collection Kubernetes

Prometheus &
Grafana

• Observability Ansible Collection Kubernetes

28

Table 8. Deliverables: The Decentralized NAS Matrix

Solution Characteristics Deliverable Runtime

Syncthing • Files
Synchronization

Ansible Collection Operating System

Samba Server • Files Sharing Ansible Collection Kubernetes

NFS Server • Files Sharing Ansible Collection Kubernetes

Table 9. Deliverables: The Services Matrix

Solution Characteristics Deliverable Runtime

Nextcloud • Contacts
Management

• Calendars
Management

• Photos
Synchronization

• Files
Synchronization

• Files Sharing

• Backup and Restore
(with duplicity)

Kustomize Module Kubernetes

Glossary
Containerization

Containerization is a type of virtualization strategy that emerged as an alternative to traditional
hypervisor-based virtualization.
https://www.techopedia.com/definition/31234/containerization-computers

Continuous Integration (CI)

Continuous integration (CI) is a software development practice in which each member of a
development team integrates his work with that produced by others on a continuous basis.
https://www.techopedia.com/definition/24368/continuous-integration-ci

Disaster Recovery

Disaster recovery is a set of policies and procedures which focus on protecting an organization
from any significant effects in case of a negative event, which may include cyberattacks, natural
disasters or building or device failures.
https://www.techopedia.com/definition/31989/disaster-recovery

Hardening

Hardening refers to providing various means of protection in a computer system. Protection is
provided in various layers and is often referred to as defense in depth.
https://www.techopedia.com/definition/24833/hardening

29

https://www.techopedia.com/definition/31234/containerization-computers
https://www.techopedia.com/definition/24368/continuous-integration-ci
https://www.techopedia.com/definition/31989/disaster-recovery
https://www.techopedia.com/definition/24833/hardening

High Availability (HA)

High availability refers to systems that are durable and likely to operate continuously without
failure for a long time.
https://www.techopedia.com/definition/1021/high-availability-ha

Port Forwarding

Port forwarding is a networking technique through which a gateway or similar device transmits
all incoming communication/traffic of a specific port to the same port on any internal network
node.
https://www.techopedia.com/definition/4057/port-forwarding

Network-attached storage (NAS)

Network attached storage (NAS) is a dedicated server, also referred to as an appliance, used for
file storage and sharing. NAS is a hard drive attached to a network, used for storage and
accessed through an assigned network address.
https://www.techopedia.com/definition/26197/network-attached-storage-nas

Reverse Proxy Server

A reverse proxy server is a type of proxy server that manages a connection or any specific
requests coming from an external network/Internet toward an internal network.
https://www.techopedia.com/definition/16048/reverse-proxy-server

References
Opinions

▪ [cpa] Contributopia, https://contributopia.org/en

▪ [dgo] De-google-ify Internet, https://degooglisons-internet.org/en

Publication

▪ [dcc] The NIST Definition of Cloud Computing, https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf

Concepts

▪ [doha] What is High Availability?, https://www.digitalocean.com/community/tutorials/what-is-
high-availability

▪ [rhco] What is container orchestration?, https://www.redhat.com/en/topics/containers/what-is-
container-orchestration

▪ [rhc] What’s a Linux container?, https://www.redhat.com/en/topics/containers/whats-a-linux-
container

▪ [rhic] What is Infrastructure as Code (IaC)?, https://www.redhat.com/en/topics/automation/what-
is-infrastructure-as-code-iac

▪ [vswt] What is a virtual server?, http://www.linux-vs.org/whatis.html

30

https://www.techopedia.com/definition/1021/high-availability-ha
https://www.techopedia.com/definition/4057/port-forwarding
https://www.techopedia.com/definition/26197/network-attached-storage-nas
https://www.techopedia.com/definition/16048/reverse-proxy-server
https://contributopia.org/en
https://degooglisons-internet.org/en
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://www.digitalocean.com/community/tutorials/what-is-high-availability
https://www.digitalocean.com/community/tutorials/what-is-high-availability
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac
https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac
http://www.linux-vs.org/whatis.html

Security Hardening

▪ [hwn] How To Harden Your Home Wireless Network?, https://informationhacker.com/how-to-
harden-your-home-wireless-network

▪ [dsp] DevSec Project, https://dev-sec.io

Technologies

▪ [acsh] Ansible Collection - devsec.hardening, https://galaxy.ansible.com/devsec/hardening

▪ [ans] Ansible, https://www.ansible.com

▪ [cncf] Cloud Native Computing Foundation, https://www.cncf.io

▪ [cntd] Containerd, https://containerd.io

▪ [dup] duplicity, http://duplicity.nongnu.org

▪ [grf] Grafana, https://grafana.com/

▪ [hlm] Helm, https://helm.sh

▪ [k3s] k3s, https://k3s.io

▪ [k8s] Kubernetes, https://kubernetes.io

▪ [kad] Keepalived, https://www.keepalived.org

▪ [kdb] Kubernetes Dashboard, https://github.com/kubernetes/dashboard

▪ [ktz] Kustomize, https://kustomize.io

▪ [lhn] Longhorn, https://longhorn.io

▪ [ncd] Nextcloud, https://nextcloud.com

▪ [nfs] Network File System, https://tools.ietf.org/html/rfc5661

▪ [pmt] Prometheus, https://prometheus.io

▪ [por] Portainer, https://www.portainer.io

▪ [smb] Samba, https://www.samba.org

▪ [syt] Syncthing, https://syncthing.net

▪ [tra] Traefik, https://traefik.io

31

https://informationhacker.com/how-to-harden-your-home-wireless-network
https://informationhacker.com/how-to-harden-your-home-wireless-network
https://dev-sec.io
https://galaxy.ansible.com/devsec/hardening
https://www.ansible.com
https://www.cncf.io
https://containerd.io
http://duplicity.nongnu.org
https://grafana.com/
https://helm.sh
https://k3s.io
https://kubernetes.io
https://www.keepalived.org
https://github.com/kubernetes/dashboard
https://kustomize.io
https://longhorn.io
https://nextcloud.com
https://tools.ietf.org/html/rfc5661
https://prometheus.io
https://www.portainer.io
https://www.samba.org
https://syncthing.net
https://traefik.io

	homecloud: a cloud at home with Kubernetes and Syncthing
	Table of Contents
	Introduction
	Vision
	Business scenarios
	Drivers
	Constraints
	Principles
	Requirements
	Work Packages

	The Platform
	The hosting strategies
	The container engine and orchestrator
	The cluster availability
	The distributed block storage
	The reverse proxy
	Monitoring and alerting
	Orchestrator management
	Backup and restore
	Security hardening
	Infrastructure as code
	Characteristics

	Decentralized NAS
	Characteristics
	Software Architecture
	Deployment
	Example

	Services
	Characteristics
	Software Architecture
	Deployment
	Example

	Deliverables
	Glossary
	References

